

Gas-phase Hydroformylation of 1-Butene using Monolithic Supported Liquid-Phase (SLP) Catalyst

<u>Mahtab Madani¹</u>, Leonhard Schill¹, Nanette Zahrtmann², Raquel Portela³, Linda Arsenjuk⁴, Robert Franke⁴, Rasmus Fehrmann¹, Anders Riisager¹

¹Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical, University of Denmark, Lyngby, Denmark ²LiqTech Ceramics A/S, Ballerup, Denmark, ³Institute of Catalysis and Petrochemistry (ICP-CSIC), Spectroscopy and Industrial Catalysis Group. Madrid, Spain, ⁴Evonik Operations GmbH, Marl, Germany

- MACBETH project
- Hydroformylation (HyFo) of olefins
- SLP system
- SLP HyFo catalytic testing
- Summary & outlook

MACBETH project

14. A. A. CI

Acronym:

Membrane And Catalysts Beyond Economic and Technological Hurdles

Goals:

- Development of new supported liquid-phase catalysts
- Reactor systems development for large-scale chemicals production

Impacts:

- Reduction of GHGs
- Increase of resources & energy efficiency
- Reduce operational & investment costs

- 24 partners
- 10 countries
- 6 plant/testing sites (?)

🖄 macbeth.h2020@gmail.com

MACBETH cases

HyFo - Hydroformylation

Conversion of olefins & syngas to aldehydes

Production of specialty chemicals

H₂ – Hydrogen Production

Natural gas methane conversion to hydrogen

PDH – Propane Dehydrogenation

Conversion of propane to propylene

Production of petrochemicals

BOC – Bio Catalytical Oil Cleavage

Conversion of vegetable oils to fatty acids or their alkyl ester derivates

Food industry and biofuels

Hydroformylation of olefins

Hydroformylation (HyFo) reaction

- > 10 mio. t per year
- Homogeneously catalyzed process
- Huge incentive for heterogenization

Chem. Rev. 2012, 112, 11, 5675

Supported Liquid-Phase (SLP) System

A bridge between heterogeneous & homogeneous catalysis

Catalysis classifications

Heterogeneous Catalysis

Advantages:

- Straightforward catalyst/product separation
- Simple reactor design

Drawbacks:

- Low selectivity
- Low mechanistic understanding

Homogeneous Catalysis

Advantages:

- High selectivity
- High activity
- Deep mechanistic understanding

Drawbacks:

Difficult catalyst/product separation

Heterogenized homogeneous Catalysis

- Secure the advantages of both homogeneous & heterogeneous catalysis
- An example \rightarrow SLP system

SLP system

- SLP system \rightarrow one example of heterogenized homogeneous catalysis
- Immobilization of a homogeneous catalyst solution on a solid support
- Secure the advantages of both homogeneous & heterogeneous catalysis

Monolithic SiC support

Monolithic SiC support:

- Chemically inert
- Efficient thermal conductivity
- Reduced pressure drop
- Simple up-scaling by modular design

Monolithic SiC support – leaching issue

Large macropores in the SiC monolith

Too weak capillary forces

Catalyst system leaching

New porous monoliths have to be developed

Infiltration by metal oxide (SiO₂) nanoparticles

Portela et al., Reaction Chemistry & Engineering, 2021, 6, 2114

Monolithic support structure

Macropores (~ 10 µm)

Si

 SiO_2 washcoat

- Mesopores (~ 3-30 nm)
- Provides high surface area
- Better liquid catalyst dispersion
- Smooth surface for membrane application

J. M. Marinkovic, Technical University of Denmark, 2019

SiC skin

Support variations

Variable parameters:

Number of SiO₂ washcoat layers

• Size of the SiO₂ washcoat particles

Support name	SiO2 particle size (nm)	# of washcoat layer	Intermediate washcoat calcination	Theo. Size of mesopores (nm)
1×Si 7	7	1	-	2.8
1×Si 70	70	1	-	28
2×Si 70	70	2	-	28
2×Si 70-calc.	70	2	✓	28

Portela et al., Catalysis Today. 2022, 383, p 44-54

Support structure

SEM on SiC monolith

Mercury Intrusion porosimetry (MIP)

Silica NPs infiltration shows trimodal pore size distribution comprising meso, small & large macropores

16

J. M. Marinkovic, Technical University of Denmark, 2019

SLP catalyst system

Impregnation of a porous solid material with the homogeneous catalyst solution

Monolithic support

Catalyst stock solution

SLP catalyst

Sebacate melts at the reaction temperature & forms the liquid-phase

The overall SLP system

SLP HyFo catalytic testing

Monolithic supported Rh-catalysts in gas-phase HyFo of 1-butene

SLP HyFo-rig and reaction conditions

Aim:

Structure-catalytic performance correlation in different supports

- T = 120 °C
- $P_{feed} = 10 \text{ bar}$
- Rh/bpp/sebacate molar ratio = 1/4/16
- Rh loading = ca. 0.01 wt.%
- TOS = 0-44 h \rightarrow start-up conditions
- TOS = 44-140 h → standard conditions (syngas = 4.46, 1-butene = 1.045, N₂ = 5.67 mmol.min⁻¹)

Catalytic performance results

Catalyst selectivity

- Higher aldol accumulation in 7 nm SiO₂ washcoat containing support due to smaller pore size in the washcoat (2.8 vs. 28 nm)
- Steady decrease of n/iso-aldehyde due to autocatalytic decomposition of bpp ligand

Catalytic performance results

Catalyst activity

 Steady decrease of 1-butene conversion in 7 nm SiO₂ washcoat containing support → due to higher aldol formation

Summary & outlook

- Silica washcoated monolithic SiC supports with different porosity were developed for 1-butene HyFo after impregnation with a homogeneous Rh-catalyst system
- Catalytic performance showed better catalytic activity for 70 nm silica washcoated supports along with desired negligible aldol formation
- Better *n*-pentanal selectivity in 7 nm silica washcoated support
- Prominent catalytic performance in different support modifications and long-term stability
- Outlook → optimization of catalyst components → e.g. optimization of the ratio between active catalyst components, liquid loading, etc.

Acknowledgements

The MACBETH Hydroformylation team (DTU, FAU, CSIC, EVONIK, HEREON, LIQTECH)

European Union's Horizon 2020 research and innovation program for funding the MACBETH project

